
A Programming Primer

David Bau

2013

2013.10.17

Reference

Movement
fd 50 forward 50 pixels

bk 10 backward 10 pixels

rt 90 turn right 90 degrees

lt 120 turn left 120 degrees

home() go to the page center

slide x, y slide right x and forward y

moveto x, y go to x, y relative to home

turnto 45 set direction to 45 (NE)

turnto obj point toward obj

speed 30 do 30 moves per second

Appearance
ht() hide the turtle

st() show the turtle

scale 8 do everything 8x bigger

wear yellow wear a yellow shell

fadeOut() fade and hide the turtle

remove() totally remove the turtle

Output
p = write 'hi' adds HTML to the page

p.html 'bye' changes old text

button 'go',

-> fd 10

adds a button with
an action

read (n) ->

write n*n

adds a text input with
an action

t = table 3,5 adds a 3x5 <table>

t.cell(0, 0).

text 'aloha'

selects the first cell of the
table and sets its text

Other Objects
$(window) the visible window

$('p').eq(0) the first <p> element

$('#zed') the element with id="zed"

Drawing
pen blue draw in blue

pen red, 9 9 pixel wide red pen

pen null use no color

pen off pause use of the pen

pen on use the pen again

mark 'X' mark with an X

dot green draw a green dot

dot gold, 30 30 pixel gold circle

pen 'path' trace an invisible path

fill cyan fill traced path in cyan

Properties
turtle name of the main turtle

getxy() [x, y] position relative to home

direction() direction of turtle

hidden() if the turtle is hidden

touches(obj) if the turtle touches obj

inside(window) if enclosed in the window

Sets
g = hatch 20 hatch 20 new turtles

g = $('img') select all as a set

g.plan (j) ->

 @fd j * 10

direct the jth turtle to go
forward by 10j pixels

Other Functions
see obj inspect the value of obj

speed 8 set default speed

tick 5, -> fd 10 go 5 times per second

click -> fd 10 go when clicked

random [3,5,7] return 3, 5, or 7

random 100 random [0..99]

play 'ceg' play musical notes

Colors
white gainsboro silver darkgray gray dimgray black

whitesmoke lightgray lightcoral rosybrown indianred red maroon

snow mistyrose salmon orangered chocolate brown darkred

seashell peachpuff tomato darkorange peru firebrick olive

linen bisque darksalmon orange goldenrod sienna darkolivegreen

oldlace antiquewhite coral gold limegreen saddlebrown darkgreen

floralwhite navajowhite lightsalmon darkkhaki lime darkgoldenrod green

cornsilk blanchedalmond sandybrown yellow mediumseagreen olivedrab forestgreen

ivory papayawhip burlywood yellowgreen springgreen seagreen darkslategray

beige moccasin tan chartreuse mediumspringgreen lightseagreen teal

lightyellow wheat khaki lawngreen aqua darkturquoise darkcyan

lightgoldenrodyellow lemonchiffon greenyellow darkseagreen cyan deepskyblue midnightblue

honeydew palegoldenrod lightgreen mediumaquamarine cadetblue steelblue navy

mintcream palegreen skyblue turquoise dodgerblue blue darkblue

azure aquamarine lightskyblue mediumturquoise lightslategray blueviolet mediumblue

lightcyan paleturquoise lightsteelblue cornflowerblue slategray darkorchid darkslateblue

aliceblue powderblue thistle mediumslateblue royalblue fuchsia indigo

ghostwhite lightblue plum mediumpurple slateblue magenta darkviolet

lavender pink violet orchid mediumorchid mediumvioletred purple

lavenderblush lightpink hotpink palevioletred deeppink crimson darkmagenta

Visit http://turtlebits.net/ to run your programs.

The free website is made possible by your purchase of this book.

"The love of beauty is taste.

The creation of beauty is Art."

- Ralph Waldo Emerson

Copyright © 2013 David Bau.

A Programming Primer runs on TurtleBits

which unites the CoffeeScript language by Jeremy Ashkenas in 2009,

and Iced await/defer extensions created by Maxwell Krohn in 2012,

with the jQuery-turtle plugin devleoped by the author in 2011,

built on the jQuery library invented by John Resig in 2006.

This work is inspired by the beloved LOGO language

created by Seymour Papert and Wally Feurzeig in 1967.

Special thanks to the students in Lincoln Massachusetts,

Beaver Country Day School, and Dorchester McCormack School

who vetted this material.

Post questions, ideas, and bug reports to http://turtlebits.net/group

This book is typeset in Łukasz Dziedzic's 2010 open font Lato

and Paul D. Hunt's 2012 Adobe Source Code Pro.

No Thresholds and No Limits

The aim of this book is to teach you to write programs as you would use

a pencil: as an outlet for creativity and as a tool for understanding.

These pages follow a fifty-year tradition of using programming as a

liberating educational tool, with no thresholds for beginners, and no

limits for experts. Seymour Papert's LOGO is the inspiration. Start with

a few lines of code, and progress to writing programs to explore art,

mathematics, language, algorithms, simulation, and thought.

The language is CoffeeScript. Although CoffeeScript is a production

programming language used by pros, it was chosen here because it has

an elegance and simplicity well-suited for beginners. While the first

examples make the language look trivial, CoffeeScript has a good

notation for all the important ideas: algebraic expressions, lists, loops,

functions, objects, and concurrency. As you learn the language,

remember that the goal should be not mastery of the syntax, but

mastery of the underlying concepts.

Edit and run your programs on turtlebits.net. The site is a live

experiment in community learning: everything posted is public, so write

programs that would be interesting to others. Accounts are free.

As you experiment by building your own ideas, you will find that at first

your programs will behave in ways that you do not intend. Details

matter, and persistence pays off. If you are patient in adjusting and

perfecting your work, you will be rewarded with insight.

Read, think, play, and strive to create something beautiful.

David Bau, 2013

Extra page

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim

veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea

commodo consequat. Duis aute irure dolor in reprehenderit in voluptate

velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat

cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id

est laborum.

About intelligence. TBD.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim

veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea

commodo consequat. Duis aute irure dolor in reprehenderit in voluptate

velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat

cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id

est laborum.

1. Lines

First
pen red

fd 50

rt 90

Square
pen blue

fd 50; rt 90

fd 50; rt 90

fd 50; rt 90

fd 50; rt 90

Triangle
pen black

fd 70; rt 120

fd 70; rt 120

fd 70; rt 120

House
speed 5

pen green

fd 30; lt 90

fd 10; rt 120

fd 80; rt 120

fd 80; rt 120

fd 10; lt 90

fd 30; rt 90

fd 60; rt 90

Star
pen gold

fd 100; rt 144

fd 100; rt 144

fd 100; rt 144

fd 100; rt 144

fd 100; rt 144

A simple computer program is called a script, because the computer

performs it like reading lines like a play. Each command is followed, one

at a time, from beginning to end.

Basic Movement

The scripts on this page use four basic functions to move a turtle:

fd 100 moves the turtle forward 100 pixels.

bk 100 goes backward.

rt 90 turns right 90 degrees.

lt 90 turns left.

In CoffeeScript, fd is different from FD (and FD is not defined), so all

these function names should be typed in lowercase. It is important to

put a space between the function name and the number. Do not indent

the code for now, because indenting has special meaning in the

language.

Notice that a small turn traces out an obtuse angle. An acute angle

requires a turn more than 90. Turtles measure turns in exterior angles, so

a complete circuit always adds to a multiple of 360.

On turtlebits.net, you can try single commands and ask for help in the

console on the bottom of the right panel. It is a good way to experiment.

Drawing in Color

The turtle draws a line by selecting a pen.

pen red traces out a line in red.

Common color names such as red, black, white, blue, green, yellow,

orange, and purple all work. There are 140 standard color names that

are listed at the end of this book.

Unselect the pen by using pen null . Use pen erase for an eraser.

Speed

The turtle takes about a second to trace out any movement, but its

speed can be changed.

speed 10 sets the speed to 10 moves per second.

speed Infinity moves instantly.

Semicolons

The semicolon (;) that appears in the examples is just used for combining

two commands on the same line. These programs would behave the

same if all the commands separated by semicolons were written on

separate lines.

O

X

27. Intelligence

Tic Tac Toe
grid = table 3, 3,

 {width: 48, height: 48, font: "32px Arial Black", background: "wheat"}

grid.home()

board = [0, 0, 0, 0, 0, 0, 0, 0, 0]

grid.cell().click ->

 move = grid.cell().index this

 return unless winner() is 0 and board[move] is 0

 board[move] = 1

 $(this).text 'X'

 setTimeout respond, 500

respond = ->

 response = bestmove(-1).move

 if response?

 board[response] = -1;

 grid.cell().eq(response).text 'O'

 colorwinner()

bestmove = (player) ->

 win = winner()

 if win isnt 0 then return {move: null, advantage: win}

 choices = {'-1': [], '0': [], '1': []}

 for think in [0..8] when board[think] is 0

 board[think] = player

 outcome = bestmove(-player).advantage

 choices[outcome].push {move: think, advantage: outcome}

 board[think] = 0

 for favorite in [player, 0, -player] when choices[favorite].length

 return random choices[favorite]

 return {move: null, advantage: 0}

rules = [[0,1,2],[3,4,5],[6,7,8],[0,3,6],[1,4,7],[2,5,8],[0,4,8],[2,4,6]]

winner = ->

 for row in rules

 if board[row[0]] and board[row[0]] is board[row[1]] is board[row[2]]

 return board[row[0]]

 return 0

colorwinner = ->

 for row in rules

 if board[row[0]] and board[row[0]] is board[row[1]] is board[row[2]]

 for n in row

 grid.cell().eq(n).css {color: red}

About search. TBD.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim

veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea

commodo consequat. Duis aute irure dolor in reprehenderit in voluptate

velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat

cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id

est laborum.

message

Hello You.

2. Points

Dot Row
rt 90; dot lightgray

fd 30; dot gray

fd 30; dot()

fd 30

Message
message = 'Hello You.'

see 'message'

see message

Lighthouse
pen crimson

fd 60; label 'GO'

rt 30

fd 40; rt 120; dot gold, 30

fd 40; rt 30

fd 60; rt 90

fd 40; rt 90

Smiley
speed 10

dot yellow, 160

fd 20

rt 90

fd 25

dot black, 20

bk 50

dot black, 20

bk 5

rt 90

fd 40

pen black, 7

lt 30

lt 120, 35

ht()

Bullseye
x = 18

see x * 5

dot black, x * 5

dot white, x * 4

dot black, x * 3

dot white, x * 2

GO

90

Some new functions on this page:

dot black, 20 draws a black dot of diameter 20 under the turtle.

label 'GO' draws the text GO under the turtle.

see x * 5 shows the value of x * 5 in the test console.

ht() hides the turtle. Show it again with st() .

lt 120, 35 traces an arc of radius 35 while turning left 120 degrees.

Debugging

If you are lost in a long program, add dot red or label 'A' or see x

to understand a specific point in the code.

These three functions are useful for debugging because they make a

visible record of the current state of the program without otherwise

changing things.

Variables and Strings

Most of the words in our programs (including fd , rt , speed and red)

are predefined in TurtleBits, but you can define your own words using

the = equals assignment symbol.

The assignment message = 'Hello You.' defines the word message

to stand for the text "Hello You." inside the program Message.

Bullseye defines x = 18 . After the definition, x means 18. For example,

if we were to write see x or label x , it would not draw the letter x on

the screen. It would write out the number 18. Words like x without

quotes are are called variables. Variables can stand for numbers,

functions, text, or other objects.

To literally write the letter "x" on the screen, put it in quotes: label 'x'

will show the letter x, and see 'message' will write out the word

"message". Quoted text in a program is called a string.

Arithmetic Operations

Mathematical operations are written as you would expect:

x + y addition.

x - y subtraction.

x * y multiplication.

x / y division.

Parentheses and order-of-operations work as taught in math class.

When x is 18, see x + x * x / (7 + x) will do the computation and

show 30.96.

26. Search

Maze
[width, height] = [9, 9]

grid = table(width, height).home()

sides = [

 {dx: 0, dy: -1, ob: 'borderTop', ib: 'borderBottom'}

 {dx: 1, dy: 0, ob: 'borderRight', ib: 'borderLeft'}

 {dx: 0, dy: 1, ob: 'borderBottom', ib: 'borderTop'}

 {dx: -1, dy: 0, ob: 'borderLeft', ib: 'borderRight'}

]

isopen = (x, y, side) ->

 return /none/.test(

 grid.cell(y, x).css side.ob)

isbox = (x, y) ->

 return false unless (

 0 <= x < width and

 0 <= y < height)

 for s in sides

 if isopen x, y, s

 return false

 return true

makemaze = (x, y) ->

 loop

 adj = (s for s in sides when isbox x + s.dx, y + s.dy)

 if adj.length is 0 then return

 choice = random adj

 [nx, ny] = [x + choice.dx, y + choice.dy]

 grid.cell(y, x).css choice.ob, 'none'

 grid.cell(ny, nx).css choice.ib, 'none'

 makemaze nx, ny

wander = (x, y, lastdir) ->

 moveto grid.cell y, x

 for d in [lastdir + 3 .. lastdir + 7]

 dir = d % 4

 s = sides[dir]

 if isopen x, y, s then break

 turnto grid.cell y + s.dy, x + s.dx unless dir is lastdir

 plan -> wander x + s.dx, y + s.dy, dir

makemaze 0, 0

speed 5

wander 4, 4, 0

Web pages make network requests by sending AJAX requests using

functions like the jQuery methods $.get and $.ajax .

URLs and HTTP

Every page on the web has a URL, which has five main parts:

The protocol.

The server address.

The path.

The query parameters.

The hash parameter.

Message Passing

[1, 2, 3, 4, 5]

[1, 2, 3, 4]

3. Loops

Rectangle
pen green

for d in [50, 100, 50, 100]

 fd d

 rt 90

Rainbow
for c in [

 red

 orange

 yellow

 green

 blue

 violet

]

 pen c

 rt 360, 50

 fd 10

Range
see [1..5]

see [1...5]

Square Loop
pen blue

for x in [1..4]

 fd 50

 rt 90

360 Loop
speed 100

pen red

for x in [1..360]

 fd 1

 rt 1

Descending Loop
pen purple

for x in [50..1] by -1

 rt 30, x

To draw a rectangle, we could write the following.

fd 50; rt 90; fd 100; rt 90; fd 50; rt 90; fd 100; rt 90

But that is wordy and repetitive. The program Rectangle is clearer

because it uses a for loop to repeat the fd and rt 90 commands.

The Parts of a Loop

Look closely at Rectangle. The for loop has three parts:

The loop variable d .

The loop list [50, 100, 50, 100] .

The loop body fd d; rt 90 .

The prepositions for and in are special words in the language: they

introduce a loop variable and its loop list.

Since the list countains four numbers, the loop repeats the body four

times: once with d set to 50; then once with d as 100; then again as 50;

then finally as 100 again.

Loop Lists and Ranges

A list is written by surrounding items with square brakets [] .

If you write list items on a single line, separate them with commas.

Longer lists like the list of colors in Rainbow can be written on multiple

lines for clarity; commas are not needed at linebreaks.

A range of numbers can be listed by putting two dots .. between the

lowest and highest numbers. If you use three dots ... , the effect is

similar, but the last number will not be included in the list.

Indenting is Important

The commands in the loop are indented underneath the for line to

show that they are inside the loop. It is important to indent lines inside

the loop body evenly with each other.

List items should also be indented evenly with each other when written

on separate lines.

Simple Loops and Stride

Notice that the loop variable does not need to be used inside the body

of the loop. In Square Loop and 360 Loop, the variable x is not used

except to count the number of repetitions.

In Descending Loop, the word by after the list denotes a stride, which is

how much to skip foward when looping through the list. Looping by 2

would skip every other number. Looping by -1 counts down.

25. Networks

Hangman
write "Guess one letter at a time. Don't hang yourself!"

await $.get 'http://turtlebits.net/data/animals', defer file

secret = random file.split '\n'

hung = false

blanks = write ''

blanks.home()

blanks.css { fontSize: '20px' }

do ->

 guessed = []

 wrong = 0

 while wrong < 6

 missing = 0

 hint = ''

 for letter in secret

 if letter in guessed

 hint += " #{letter} "

 else

 hint += " _ "

 missing += 1

 blanks.html "#{hint}"

 if missing is 0

 write 'You win!'

 return

 await read 'Guess?', defer letter

 guessed.push letter

 if letter not in secret

 write 'Sorry'

 send 'hang'

 wrong += 1

 write "Game over. It was #{secret}."

do ->

 pen black; fd 150; rt 90

 fd 50; rt 90; fd 20

 await recv 'hang', defer()

 lt 90; rt 540, 10; lt 90

 await recv 'hang', defer()

 fd 20; lt 45; bk 30; fd 30

 await recv 'hang', defer()

 rt 90; bk 30; fd 30; lt 45

 await recv 'hang', defer()

 fd 30

 await recv 'hang', defer()

 rt 45; fd 30

 await recv 'hang', defer()

 bk 30; lt 90; fd 30

ng yourself!"

als', defer file

Guess one letter at a time.

Don't hang yourself!

Guess?

_ _ _ _ _

About sorting. TBD.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim

veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea

commodo consequat. Duis aute irure dolor in reprehenderit in voluptate

velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat

cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id

est laborum.

4. Nesting

Violet
pen blueviolet

for x in [1..5]

 rt 72

 for y in [1..3]

 fd 50

 rt 120

Combinations
for outside in [skyblue, violet, pink]

 for inside in [palegreen, orange, red]

 dot outside, 21

 dot inside, 7

 fd 25

 rt 36

Decorated Nest
pen turquoise

for y in [1..10]

 dot blue

 for x in [1..4]

 fd 50

 rt 90

 lt 36

 bk 50

Catalog
speed 100

rt 90

for color in [red, gold, green, blue]

 jump 40, -160

 for sides in [3..6]

 pen path

 for x in [1..sides]

 fd 100 / sides

 lt 360 / sides

 fill color

 fd 40

Any code can be put in a loop, including another loop.

Nesting loops within loops can create beautiful effects. Violet arranges

five triangles around a point by nesting a loop of 3 within a loop of 5.

The single line fd 50 is repeated 15 times with perfect symmetry.

Inner and Outer Loops

When loops are nested, the inner loop is the one that repeats most

quickly. Consider Combinations.

A single pass through a loop is called an iteration. On each iteration, the

program draws a small dot within a big dot, then moves the turtle a bit.

The color of the small dot comes from the variable inside , which is the

loop variable of the inner loop. The large dot color comes from the outer

loop variable outside .

Because the inner loop repeats most quickly, the small dot colors

palegreen, orange, and red change on every iteration.

The outer loop repeats only after the inner loop has made a full set of

iterations, so the outside dot colors change only after 3 inner

iterations have been made.

Nesting Carefully

The level of indent indicates whether code is within an inner loop or an

outer loop, or not within a loop at all.

In Decorated Nest, fd 50 is indented twice to be in the innermost loop.

It runs 40 times in total. However, dot blue is only indented once, so it

is in the outer loop and done only 10 times. Lines that are not indented,

such as pen turquoise , are not looped, and they are done only once.

Loops can be nested as deeply as you like. Catalog shows a triply-nested

loop. Its innermost loop repeats by a number that varies (sides)

because the loop range comes from the second level loop variable.

Jumping and Path Filling

Some new functions:

jump 40, -160 jumps right 40 and back 160.

pen path traces with a special invisible path pen.

fill color fills the invisible path with color.

Note that jump jumps right and up relative to the current direction and

position of the turtle, and it does not draw with the pen or turn the

turtle. To jump to an absolute Cartesian coordinate, use jumpto .

3,4,4,5,6,7,7,8

S,O,R,T,M,E

O,S,R,T,M,E

O,S,R,T,M,E

O,S,R,T,M,E

M,S,R,T,O,E

E,S,R,T,O,M

E,R,S,T,O,M

E,R,S,T,O,M

E,O,S,T,R,M

E,M,S,T,R,O

E,M,S,T,R,O

E,M,R,T,S,O

E,M,O,T,S,R

E,M,O,S,T,R

E,M,O,R,T,S

E,M,O,R,S,T

24. Sorting

Quick Sort
list = (random 10 for x in [1..8])

list.sort()

write list

Slow Selection Sort
show = (points, highlight) ->

 render = for k, v of points

 if Number(k) in highlight

 "<mark>#{v}</mark>"

 else

 "#{v}"

 write "<div>#{render.join ','}</div>"

list = 'SORTME'.split ''

show list, []

for i in [0 ... list.length - 1]

 for j in [i + 1 ... list.length]

 if list[i] > list[j]

 [list[i], list[j]] =

 [list[j], list[i]]

 show list, [i, j]

Custom Quick Sort
sketch = (points) ->

 cg()

 pen null

 for p in points

 moveto p

 pen red

 dot black

array = []

button 'scatter', ->

 array = for x in [1..10]

 random 'position'

 sketch array

button 'sort', ->

 array.sort (a, b) ->

 a.pageX - b.pageX

 sketch array

scatter sort

About slicing. TBD.

The concat method creates an array that joins the elements of two

arrays together. [2...10].concat ['J', 'Q', 'K', 'A'] forms an

array starting with the numbers 2 through 10 followed by the strings

"J", "Q", "K", and "A".

The parenthesized loop (v + s for s in suits) is a list

comprehension that creates an array using a for loop. The array consists

of each value computed by the loop, in sequence.

Shuffle applies the Fisher-Yates algorithm for shuffling a deck of cards.

The algorithm is called a "perfect shuffle" because every permuatation

of the deck is equally likely.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim

veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea

commodo consequat. Duis aute irure dolor in reprehenderit in voluptate

velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat

cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id

est laborum.

5. Functions

Scoot Function
pen purple

scoot = (x) -> fd 10 * x

rt 90

scoot 7

Spike Function
spike = (x) ->

 fd x

 label x

 bk x

pen crimson

for n in [1..6]

 spike n * 10

 rt 60

Square Function
square = (size) ->

 for y in [1..4]

 fd size

 rt 90

pen red

square 80

jump 15, 15

pen firebrick

square 50

Tee Function
tee = ->

 fd 50

 rt 90

 bk 25

 fd 50

pen green

tee()

pen gold

tee()

pen black

tee()

10

2
0
3
0

405
0

6
0

The most important idea in this book:

Programs define their own functions.

A function is a miniature program. In CoffeeScript, a function is written

with an arrow -> typed as two symbols next to each other (the minus

and the greater-than) like this:

(input) -> something to do

Writing and Naming Functions

A function that advances the turtle by ten times a distance is

(x) -> fd 10 * x

Name a function like any variable, using = .

scoot = (x) -> fd 10 * x

After the definition, we can write scoot 7 or scoot 5 + 2 . In other

words, scoot can be used just like predefined functions like fd or rt .

Parameters

The variable x in parentheses in the function definition is called a

parameter. Parameters may use any name. When the function is run, the

parameter takes on the value passed to the function.

When spike n * 10 is called, the code within the function binds

parameter name x to the current value of n * 10 , which is 10 during

the first iteration of the loop.

Each time a function is called, its parameters can have different values.

The last time spike is called, n * 10 has advanced to 60, so the value

of x during the last function call is 60.

Indenting Functions

The level of indenting is important for determining the scope of a line. If

a line is indented under an arrow, that line is inside the function.

If the function itself contains loops, those should be indented further.

There is no limit to the depth of nested intenting, but indenting must be

done neatly. Each level of indenting indicates a particular function, loop,

or nested scope.

Functions with No Parameters

Functions like tee that have no parameters are written specially:

The definition tee = -> ... omits the parentheses.

Calling tee() requires empty parentheses.

small vanilla cone
small vanilla cup
small chocolate cone
small chocolate cup
medium vanilla cone
medium vanilla cup
medium chocolate cone
medium chocolate cup
large vanilla cone
large vanilla cup
large chocolate cone
large chocolate cup

J♦/3♠/7♣/9♥/6♠

3♥/10♦/7♥/7♦/8♥

A♦/Q♥/2♣/8♠/K♦

attack at dawn

NGGNPX NG QNJA

23. Slicing

Choices
choices = (menu, sofar = []) ->

 if menu.length is 0

 write sofar.join ' '

 else for item in menu[0]

 choices menu[1...],

 sofar.concat item

choices [

 ['small', 'medium', 'large']

 ['vanilla', 'chocolate']

 ['cone', 'cup']

]

Shuffle
suits = ['\u2663', '\u2666', '\u2665', '\u2660']

deck = []

for v in [2..10].concat ['J', 'Q', 'K', 'A']

 deck.push (v + s for s in suits)...

shuffle = (d) ->

 for i in [1...d.length]

 choice = random(i + 1)

 [d[i], d[choice]] = [d[choice], d[i]]

deal = (d, n) -> d.splice(-n)

shuffle deck

for x in [1..3]

 write deal(deck, 5).join('/')

Caesar Cipher
key = 13

a2z = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

rot = a2z[key...].concat a2z[...key]

box = write '<input>'

out = write ''

box.keyup ->

 result = for c in box.val()

 char = c.toUpperCase()

 if char in a2z

 rot[a2z.indexOf char]

 else

 char

 out.text result.join ''

About events. TBD.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim

veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea

commodo consequat. Duis aute irure dolor in reprehenderit in voluptate

velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat

cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id

est laborum.

6. Parameters

Polygon
polygon = (c, s, n) ->

 pen c

 for x in [1..n]

 fd s

 rt 360 / n

 pen null

polygon blue, 70, 5

bk 50

polygon(orange, 25, 6)

Rule
rule = (sizes) ->

 for x in sizes

 fd x

 bk x

 rt 90; fd 10; lt 90

pen black

rule [50, 10, 20, 10, 50, 10, 20, 10, 50]

Starburst
starburst = (x, shape) ->

 for z in [1..x]

 shape()

 rt 360 / x

stick = -> fd 30; bk 30

pen deeppink

starburst 3, stick

jump 0, -60

starburst 20, stick

jump 0, -90

starburst 10, -> fd 30; dot blue; bk 30

jump 0, -100

starburst 5, ->

 fd 30

 starburst 7, ->

 fd 10

 bk 10

 bk 30

Multiple parameters can be listed in a function definition with commas.

The declaration polygon = (c, s, n) -> sets up three parameters: a

color c , a side length s , and a number n .

Passing Arguments

The value passed to a parameter when using a function is called an

argument. When calling a function with several parameters, the

arguments are listed with commas. For clarity, you can put parentheses

around the argument list, like polygon(orange, 25, 6) .

When using parentheses around function arguments, do not put any

space between the function name and the first parentheses, or else the

parentheses will be interpreted as enclosing only the first argument.

Objects as Arguments

An argument may be a complex object such as a list. That is the approach

taken in Rule.

The parameter named sizes is used as the loop list in a for loop.

When rule is called, the whole list is passed as one argument.

Functions as Arguments

An argument may itself be another function. That is done in Starburst.

The technique allows one mini-program to be attached to another.

The call to starburst 3, stick passes the function stick as the last

argument. Inside starburst , n now stands for 3, and shape stands for

the stick function. When shape() is written, stick() is called. In the

end stick is called three times, drawing three symmetric sticks.

Calling starburst 30, stick calls stick 30 times, making a circular

starburst of 30 sticks.

Unnamed Inline Functions

Calling starburst n, something means "Do something n times in a

star." We can provide any code as something, even if unnamed.

The call starburst 10, -> fd 30; dot blue; bk 30 passes a

lollipop-like function to starburst . The function has no name &endash;

it is defined inline to draw line with a blue dot at the far end. The

starburst function binds this unnaped function to its local parameter

name shape and calls it 10 times. The result is a starburst with blue

dots.

The last starburst call passes unnamed code that does another

starburst . The result is a starburst made out of starbursts!

Touch This

22. Events

Shift Click
$(document).click (event) ->

 see event

 if event.shiftKey

 pen blue

 else

 pen null

 moveto event

Arrow Keys
pen plum

[L, R, U, D] = [37, 39, 38, 40]

keydown (event) ->

 if event.which is L then lt 5

 if event.which is R then rt 5

 if event.which is U then fd 5

 if event.which is D then bk 5

Can't Touch This
t = write "<button>Touch This</button>"

t.speed Infinity

t.moveto document

t.mousemove (event) ->

 t.rt random(91) - 45

 while t.touches(event)

 t.bk 1

Magic Hat
speed Infinity

turtle.remove()

t = write ''

t.home()

start = ->

 t.wear 'openicon:magic-tophat'

 tick off

 t.click (event) -> play()

play = ->

 t.wear 'openicon:animals-rabbit'

 tick ->

 t.moveto random 'position'

 t.click (event) -> start()

start()

About selectors. TBD.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim

veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea

commodo consequat. Duis aute irure dolor in reprehenderit in voluptate

velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat

cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id

est laborum.

5

4

3

2

1

Time's up!

7. Time

Pause
speed 100

pen red

for x in [1..20]

 fd 80

 rt 100

 if x is 10

 pause 2

Second Hand
speed Infinity

advance = ->

 pen lightgray

 bk 100

 rt 5

 pen red

 fd 100

tick advance

Countdown
seconds = 5

tick ->

 if seconds is 0

 write "Time's up!"

 tick null

 else

 write seconds

 seconds = seconds - 1

Click Draw
speed Infinity

pen green

tick ->

 moveto lastclick

Move Draw
speed Infinity

pen orange

tick 100, ->

 turnto lastmousemove

 fd 1

There are two techinques for organizing time in a program:

Queues: process lists of events over time in sequence.

Frames: process snapshots of the world at regular time intervals.

How speed Works with Queues

In TurtleBits, each turtle has its own animation queue that is used if you

set speed to any number less than Infinity. (The default speed is one.)

Each movement command like fd 100 adds the motion to the turtle's

animation queue. When the program is finished running, the turtle has

the whole plan, and it runs through its animation queue after your

program is done.

The animation queue works well for timed motions that your program

can plan ahead of time. But if you are writing a game or simulation that

needs to respond to events in real time, then you may find it more

sensible to to draw frames.

How tick Works with Frames

The tick command is used for frames: it calls the passed function at a

regular rate. The optional first argument is the frame rate (the default

rate is one frame per second).

The Countdown example writes a number on each tick callback. It also

shows how to clear the callback once you are done: call tick null .

The Move Draw example is a very simple interactive program that uses

tick . 100 times per second, it runs a function that turns the turtle

toward the position on the screen where the mouse last moved, then

advaces the turtle by one pixel. Because each frame should be drawn

instantanously, it sets speed Infinity .

New Functions and Variables

Several new built-in names are used in these examples.

pause 2 adds a 2-second pause to the animation queue.

tick 100, fn calls fn 100 times per second.

write "Time's up" writes a message on the screen.

moveto lastclick moves the turtle to the position of the last click.

turnto lastmousemove turns the turtle toward the last mouse position.

The moveto can be used with any cartesian coordinate or any object

that has a position - it happens to be used here with the special variable

lastclick . Similarly, turnto can be used with any absolute direction

or coordinate. The special variable lastmousemove happens to keep the

most recent mouse position.

Stylesheet

Tag Styles

style specific tags

Class a

Class b

Classes apply to any tag.

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19

20 21 22 23 24

a v c a dv o d o

21. Selectors

Tags
write """

<style>

h2 { color: red; }

h3 { background: bisque; }

</style>

"""

write "<h2>Stylesheet</h2>"

write "<h3>Tag Styles</h3>"

write "<p>style specific tags</p>"

Classes
write """

<style>

.a { text-decoration: underline; }

.b { font-style: italic; }

</style>

"""

write "<p class='a'>Class a</p>"

write "<h3 class='b'>Class b</h3>"

write "<p class='b'>Classes apply to any tag.</p>"

Composites
write """

<style>

i { border: 1px solid black; margin: 2px }

i:nth-of-type(1) { background: gold }

i:nth-of-type(2n+4) { background: skyblue }

i:nth-of-type(3n+9) { background: thistle }

</style>

"""

for x in [1..24]

 write "<i>#{x}</i>"

 write "<wbr>"

jQuery
write "<p><mark>a</mark>v<mark>o</mark>" +

 "c<mark>a</mark>d<mark>o</mark></p>"

$('p').css { fontSize: '200%' }

$('mark').css { background: palegreen }

$('mark').animate {

 padding: '5px' }

$('mark:nth-of-type(2n)').animate {

 opacity: 0.3 }

About styles. TBD.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod

tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim

veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea

commodo consequat. Duis aute irure dolor in reprehenderit in voluptate

velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat

cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id

est laborum.

Oh Romeo, Romeo!

Wherefore art thou

Romeo?

Oh kitty, kitty!

What did you eat kitty?

Notice

This long paragraph has bold,

italic, and underlined text.

Horizontal rule below.

Link with an <a>.

8. Output

Poetry and Song
cry = (who, query) ->

 write "Oh #{who}, #{who}!"

 write "#{query} #{who}?"

cry "Romeo", "Wherefore art thou"

cry "kitty", "What did you eat"

play "fc/c/dcz"

Imagery
url = "http://upload.wikimedia.org/wikipedia" +

 "/commons/6/61/Baby_Gopher_Tortoise.jpg"

write """<center>

 </center>"""

Bold Statement
n = write "<h1>Notice</h1>"

write """

<p>This long paragraph has

bold, <i>italic</i>,

and <u>underlined</u> text.

Horizontal rule below.</p>

"""

write "<hr>"

write """

<p>

Link with an <a>.

</p>

"""

n.css

 background: pink

Graffiti
n = write "<h1>Notice</h1>"

write """

<p>This long paragraph has

bold, <i>italic</i>,

and <u>underlined</u> text.

</p>"""

n.css

 background: pink

 display: 'inline-block'

n.pen purple, 10

n.bk 80

n.rt 45

n.fd 50

This long paragraph has bold,

italic, and underlined text.

N
otice

A string written with double quotes "..." can interpolate values

written as #{something} , which means the value of something is

inserted into the string.

A multiline string can be written by tripling the quotes (either double or

single) around the string, as is done in the last string of Imagery.

HTML Elements

Codes like are called HTML tags. They set off text for special

formatting: and mark bold text; <h1> and </h1> mark a first-

level heading; the <hr> tag is a "horizontal rule".

A matching tag pair and its contents (or singleton tag, for tags like <hr>

or that are not paired) make up an HTML element.

Attributes

HTML Elements can have attributes with special meanings such as the

href attribute on the <a> element, which sets the URL for a hyperlink.

The other attributes seen on this page are the src and width

attributes on the element, which specify the location from which

to load the image data, and the scaling width to use.

jQuery Objects

Programs can use jQuery objects to alter HTML elements on the screen.

The code n = write "<h1>Notice</h1>" returns a jQuery object for

the <h1> element, and stores it in the variable n . Then the jQuery

function n.css is used to alter its CSS.

In TurtleBits, all the turtle methods such as fd and pen are available as

jQuery methods. Any element can be moved like a turtle.

CSS Properties

CSS properties can alter many of the details of HTML formatting such as

such as an element's background (set here to pink). The css function

can set more than one property at once, and the property list under

n.css should be indented.

Exploring More

HTML is a rich subject. There are more than 100 types of HTML

elements, more than 100 HTML attributes, more than 100 jQuery

methods, and more than 100 CSS properties. The best way to explore all

these options is to search for and consult the many resources on the

Internet about these technologies.

And experiment.

Outlined.

Fancy!

Before

After

efore
D e c o r a t e d

20. Styles

Thick Lines
pen blue, 10

fd 100; rt 90

pen pink, 3

fd 50; rt 90

pen 'orange ' +

 'lineWidth 10 ' +

 'lineCap square'

fd 100; rt 90

pen black

fd 50

Border
text = write 'Outlined.'

text.css { border: '2px solid red' }

turtle.css { border: '3px dotted blue' }

Font
h = write 'Fancy!'

h.css

 font: '55px Helvetica'

 fontStyle: 'italic'

Text Decoration
write 'Before'

d = write 'Decorated'

write 'After'

d.css

 display: 'inline-block'

 cursor: 'pointer'

 padding: '10px'

 margin: '-5px'

 opacity: '0.7'

 color: 'white'

 fontSize: '110%'

 letterSpacing: '5px'

 textDecoration: 'underline'

 boxShadow: '1px 1px black'

 background: 'mediumaquamarine'

 transform: 'rotate(10deg)translateX(20px)'

The random function can be used in several ways:

random [1..6] chooses a random member of a list.

random 70 chooses a random integer from 0 to 69.

random position picks a random screen position.

random color picks a random color.

random normal picks a normally distributed number.

All of these are built using the lower-level function:

Math.random() returns a random number between 0.0 and 1.0.

Guess my number.

⇒ 50

Too small!

4 left.

⇒ 75

Too big!

3 left.

⇒ 64

Too big!

2 left.

⇒ 55

Too small!

Last guess!

⇒ 59

You got it!

9. Input

Button Control
pen sienna

button 'R', -> rt 10

button 'F', -> fd 10

button 'D', -> dot 'darkslateblue'

Polygon to Order
read "Color?", (color) ->

 read "Sides?", (sides) ->

 pen color

 for x in [1..sides]

 fd 30

 rt 360 / sides

Guess My Number
secret = random [1..100]

turns = 5

write "Guess my number."

dopick = (pick) ->

 if pick is secret

 write "You got it!"

 return

 if 1 <= pick < secret

 write "Too small!"

 turns = turns - 1

 else if secret < pick <= 100

 write "Too big!"

 turns = turns - 1

 if turns > 1

 write "#{turns} left."

 readnum dopick

 else if turns is 1

 write "Last guess!"

 readnum dopick

 else

 write "Game over."

 write "It was #{secret}."

readnum dopick

Polygon Revisited
await read "Color?", defer color

await read "Sides?", defer sides

pen color

for x in [1..sides]

 fd 30

 rt 360 / sides

R F D

Color? red

Sides? 8

Color? green

Sides? 8

The examples on this page gather input using callbacks:

button sets up a function to be called whenever a button is pressed.

read calls a function once after the user answers a prompt.

readnum is like read, but for numbers only.

Chaining Callbacks

If more than one read input is needed in a program, callbacks can be

chained: after the first callback receives one value, it can request

another input value by setting up a nested callback function.

Randomness and Reassigning Variables

The Guess My Number example uses the random function to pick an

unpredictable number from 1 to 100. (The argument to random is a list

of numbers to choose from.)

The game allows five turns to guess the number, tracked in the variable

turns . The assignment turns = turns - 1 means "set the value of

turns to be one less than the old value of turns ".

Booleans and Conditionals

A true or false value is called a boolean. The expression turns > 1 is a

boolean that is true when turns exceeds 1. When used with conditional

words if and else , booleans control program flow. Other examples:

pick is secret , true when the two variables have the same value.

pick isnt secret , true when the two variables are unequal.

secret < pick <= 100 , true when pick exceeds secret but not 100.

secret < pick and pick <= 100 , the same thing written using and .

not (secret >= pick or pick > 100) , again with not and or .

Statements to be be run conditionally should be indented underneath

the if or else line that controls the condition.

Repeating a Question

It is worth thinking about how the game asks repeated questions. Each

guess is collected by calling readnum dopick . The callback function,

named dopick , is a set of instructions of "what to do after a guess is

made." When readnum dopick is run inside dopick itself, it repeats the

whole process! Calling a function inside itself is called recursion.

Chained callbacks and recursion can be simplified by generating

continuations with await and defer . Polygon Revisited does exactly

the same thing as Polygon To Order: the await statement

automatically sets up a callback function that is passed using defer .

More examples can be found in the sections on Arrays and Concurrency.

6

9

11

8

10

0.3955826204144705

0.46279336348825273

0:21

1:73

2:160

3:145

4:85

5:16

19. Randomness

Two Dice
onedice = ->

 random [1..6]

twodice = ->

 onedice() + onedice()

for n in [1..5]

 write twodice()

Random Walk
for n in [1..20]

 fd 10

 rt random(181) - 90

 dot gray, 5

Cubism
for n in [1..14]

 pen random [red,black,blue]

 fd random 70

 rt 90

Confetti
for n in [1..300]

 moveto random position

 dot random color

Decimal Random
for n in [1..2]

 write Math.random()

Five Flips
c = [0, 0, 0, 0, 0, 0]

for n in [1..500]

 heads = 0

 for flips in [1..5]

 heads += random 2

 c[heads] += 1

for h of c

 b = write h + ":" + c[h]

 b.css

 background: skyblue

 width: c[h]

The thee examples on this page demonstrate how to simulate motion: a

bouncing turtle, a game of tag, and an orbiting planet.

Newtonian Simulations

When Newton worked out his famous laws of motion, he discovered

that the speed and direction of an object - its velocity - remains

unchanged as long as no forces act on the object. And he discovered

that forces do not directly change the position of an object: forces alter

an object's velocity.

When simulating motion, the velocity of an object can be represented

by a small change in position for each tick in time. An undisturbed object

moves the same distance and direction on each tick, and a forced object

will alter its velocity on each tick.

In Bounce, the two variables vx and vy are the x and y components of

velocity. The gentle accelleration due to gravity is simulated by a slight

change in velocity on each tick: vy -= 1 . The sudden accelleration of a

bounce off the floor (with some loss in energy) is represented by a sign

change in velocity: vy = Math.abs(vy) * 0.9 .

In Tag, velocity is simulated by moving each turtle forward 5 or 6 on

each tick. The physics of this game are designed for fun: the main turtle

picks its direction by pointing at the last position of the mouse. The blue

turtle runs away by adding 45 degrees to the direction from the main

turtle to itself.

Orbit is a representation of Newton's most profound discovery: that

the gravity makes objects fall to the ground is the same force that

governs the motions of the planets. In the orbital simulator, the x and y

components of velocity are in the array v , and the velocity is

accellerated on each tick using the formula v[i] += G * (s[i] -

p[i]) / d3 , where s is the position of the sun, p is the position of the

planet, and d3 is the cube of the distance between them.

Click to move the sun. Experiment with elliptical and hyperbolic orbits.

Notice the planet moves more quickly when it is near the sun.

Motion and Hit Testing Functions

slide x, y slides right by x and forward by y.

getxy() returns the absolute [x, y] position of the turtle.

b.touches(turtle) true if b touches the main turtle.

inside(window) true if the main turtle is fully inside the window.

direction(b) the direction from the turtle to b .

distance(sun) the distance from the turtle to sun .

53

8

1a

2b

3c

radius 1

a 3.141592653589793

c 6.283185307179586

radius 5

a 78.53981633974483

c 31.41592653589793

radius 10

a 314.1592653589793

c 62.83185307179586

5

13

14.142135623730951

14

gcf(120,80)=40

gcf(120,81)=3

gcf(120,82)=2

gcf(120,83)=1

gcf(120,84)=12

gcf(120,85)=5

gcf(120,86)=2

gcf(120,87)=3

gcf(120,88)=8

10. Numbers

Parsing
write '5' + '3'

write Number('5') + Number('3')

Ways to Count
counter = 0

write ++counter + 'a'

write (counter += 1) + 'b'

write (counter = counter + 1) + 'c'

Circle Measurements
area = (radius) ->

 Math.PI * radius * radius

circumference = (radius) ->

 2 * Math.PI * radius

for r in [1, 5, 10]

 write 'radius ' + r

 write 'a ' + area r

 write 'c ' + circumference r

Hypotenuse
hypotenuse = (a, b) ->

 Math.sqrt(a * a + b * b)

write hypotenuse 3, 4

write hypotenuse 5, 12

write hypotenuse 10, 10

write Math.floor(hypotenuse(10, 10))

Euclid's Method
gcf = (a, b) ->

 if a > b

 return gcf b, a

 remainder = b % a

 if remainder is 0

 return a

 gcf remainder, a

for x in [80..88]

 write "gcf(120,#{x})=" +

 gcf(120, x)

In CoffeeScript, numbers are unquoted. The language treats numbers

and strings differently: 5 + 3 is 8, while '5' + '3' is "53".

Numerical Conversion

Strings can be parsed to numbers using the Number function; the

String function does the opposite.

CoffeeScript allows numbers and strings to be mixed, but you should be

careful when doing it. Adding a number to a string will convert the

number to a string and attach it. Multiplying a number by a string will

convert the string to a number and do the numerical product.

Three Ways to Change a Variable

There are three types of statements that change the value of a variable.

++counter the increment operator. Putting ++ before the variable

name increments the value before it is used, and putting ++ after the

variable increments it after it is used. The -- decrement is similar.

counter += 1 the sum assignment operator, which changes a variable

by adding a value. There are also -= , *= , and /= operators.

counter = counter + 1 the ordinary assignment operator. Notice that

the right hand side is computed before the left hand side is changed.

Floating Point Limits

Coffeescript uses IEEE 754 "double-precision" floating-point numbers,

which means numbers are stored using 64 bits. Scientific notation is

written with an e+ or e- followed by a power of 10: 1e+6 is one million

and 1e-9 is one billionth.

There are 15 digits of precision, and every integer up to

9,007,199,254,740,992 can be written exactly. There are also special

Infinity and NaN ("Not a Number") values. However, not every real

number can be represented exactly: the next number after zero is 5e-

324 and the largest number is 1.79e+308 .

The limits are expansive, so for most practical purposes, you can treat

CoffeeScript numbers as if they were real numbers.

The Modulo Operator

The modulo operator x % y computes the remainder of x when divided

by y . In other words, it removes the largest integer multiple of y from

x and returns the remainder.

The modulo operator is useful for divisibility tests: x % y is zero if x is

divisible by y . Euclid's famous algorithm uses the modulo operator to

efficiently compute greatest common factors.

Catch blue!

18. Motion

Bounce
speed Infinity

pen purple

vy = 10

tick 20, ->

 slide 1, vy

 if inside(window)

 vy -= 1

 else

 vy = Math.abs(vy) * 0.9

Tag
speed Infinity

write "Catch blue!"

b = hatch blue

bk 100

tick 10, ->

 turnto lastmousemove

 fd 5

 b.turnto 45 + direction b

 b.fd 6

 if b.touches(turtle)

 write "You win!"

 tick off

 else if not b.touches(window)

 write "Blue got away!"

 tick off

Orbit
speed Infinity; pen orange

G = 100

v = [0, 1]

sun = hatch(gold)

sun.slide G, 0

tick 100, ->

 sun.moveto lastclick

 s = sun.getxy()

 p = getxy()

 d = distance(sun)

 d3 = d * d * d

 if d3 > 0 then for i in [0..1]

 v[i] += G * (s[i] - p[i]) / d3

 slide v[0], v[1]

String algorithms to locate patterns in text are a fundamental tool for

understanding written language.

Characters

Strings are arrays of characters. The Unicode character set supports

textual communication around the world, so it includes characters for

every international alphabet, every Asian pictographic word, and every

common mathematical symbol.

Unicode assigns a number to every character. String.fromCharCode

gets the character for the number, and text.charCodeAt gets the

number for a character. Numbers up to 127 are ASCII codes that cover

American English: 65 is uppercase A, 122 is lowercase z, 48 is the 0 digit,

32 is the space, and 36 is the $ dollar symbol.

Locating Substrings in Text

The simplest way to match text is to find an exact substring:

text.indexOf returns the location of the first ocurrance of the given

substring in text , or -1 if none was found. Conversely, if you have an

index of interest, text.substr x, len returns the len characters

starting at index x .

Matching Patterns

Regular expressions, are flexible and precise text patterns written

between pairs of slash /.../ delimiters. Regular expression syntax is a

whole language that is the topic of several good books and websites.

Here are a few basics:

(abc)* matches zero or more repetitions of abc.

[abc] matches either an a or b or c.

a..c matches a followed by two characters then c.

ab+c matches a, then one or more b's, then c.

[a-z]{3} matches three lowercase letters.

\d* matches zero or more digits.

x\s+ matches x followed by one or more spaces.

z\b matches a z followed by a word boundary.

The text.match method returns matching substrings. Normally, the

first match is found, but if the letter g (for "global") follows the pattern

then all matching substrings are returned. There are other useful

suffixes: i makes the match case-insensitive.

The pattern.exec method extracts of submatches within parentheses

in the pattern, and the text.replace method replaces matches with a

new string.

2

4

8

16

32

32

1.4142135623730951

1

2

6

24

2

3

5

8

13

21

11. Computation

Power
power = (x, p) ->

 answer = 1

 answer *= x for i in [0...p]

 return answer

for n in [1..5]

 write power(2, n)

Built-in Power
write Math.pow(2, 5)

write Math.pow(2, 0.5)

Factorial
factorial = (x) ->

 if x < 1 then 1

 else x * factorial(x - 1)

for x in [1..4]

 write factorial x

Fibonacci
fib = (n) ->

 if n <= 2

 1

 else

 fib(n - 1) + fib(n - 2)

for x in [3..8]

 write fib x

Complex
mandelbrot = (n, c, z) ->

 if n is 0 or z.r*z.r + z.i*z.i > 4

 return n

 else return mandelbrot n - 1, c,

 r: c.r + z.r*z.r - z.i*z.i

 i: c.i + 2*z.r*z.i

speed 100

ht()

scale 150

s = 0.05

for x in [-2..1] by s

 for y in [-1.5..1.5] by s

 n = mandelbrot 20, {r:x,i:y}, {r:x,i:y}

 moveto x, y

 dot hsl(100, 1, n/20), s

The Math object provides constants and functions you would find on a

scientific calculator. A partial list:

Math.E the natural logarithm base, 2.71828...

Math.PI the circular ratio, 3.14159...

Math.abs(x) absolute value of x.

Math.round(x) round x to the nearest integer.

Math.floor(x) round x down.

Math.ceil(x) round x up.

Math.max(x, y) the greater of x and y.

Math.min(x, y) the lesser of x and y.

Math.sqrt(x) the square root of x.

Math.pow(x, y) x raised to the power y.

Math.log(x) the natural logarithm of x.

Math.sin(x) the sine of x (in radians).

Math.cos(x) the cosine of x (in radians).

Math.atan(x) the arctangent of x (in radians).

Returning Values, Recursion, and Base Cases

Other mathematical functions can be built yourself. The output, or

return value, of a CoffeeScript function is the last value computed in the

function. The statement return n ends a function with the return value

n .

The functions fib and factorial are are recursive: they refer to

themselves in their own definition. When writing a recursive function it

is important that the recursion ends at a base case (such as where fib

defines the value as 1 when n <= 2).

Recursion without a base case will loop forever and freeze up. There

must be initial values for which the function does not depend on itself.

Generalizing

Although the built-in numbers represent reals, complex numbers can be

represented as pairs of numbers. In Mandelbrot, the parameters c and

z are complex numbers represented by objects that each contain an r

and i property.

That example uses scale 150 to grow the turtle by 150-fold. The hsl

function generates colors based on hue, saturation, and lightness.

Mathematical algorithms have a long and fascinating history. It is worth

researching how Mandelbrot's remarkable fractal works; how Gauss's

Gamma function generalizes factorials to all numbers; and how the

Fibonacci sequence relates to sunflower seeds and the golden mean.

47

which g

charCode 73

string I

88 X

188 ¼

9988

["will grow"]

["yo"]

[" of "]

["of"]

["If", "of", "to", "me"]

["grain", "grow", "not"]

null

Speak, then, to me.

["If", "you", "can"]

group 0: seeds of time

group 1: seeds

group 2: time

If you can look into the

seeds of time

And say WHICH grain

WILL grow and WHICH

WILL not,

Speak, then, to me.

17. Text

text = """If you can look into the seeds of time

 And say which grain will grow and which will not,

 Speak, then, to me."""

Substr
see text.indexOf 'which'

see text.substr 47, 7

Unicode
see 'charCode', text.charCodeAt(0)

see 'string', String.fromCharCode(73)

for x in [88, 188, 9988]

 see x, String.fromCharCode(x)

Match
see text.match /w....g.../

see text.match /[a-z][a-z]/

see text.match /\s[a-z][a-z]\s/

see text.match /\b[a-z][a-z]\b/

see text.match /\b[a-z][a-z]\b/gi

see text.match /\b[gn][a-z]*\b/g

see text.match /z/

Split
lines = text.split /\n/

see lines[2]

words = text.split /\s+/

see words[0..2]

Groups
pattern = /\b([a-z]+) of ([a-z]+)\b/

matched = pattern.exec text

for g in [0..2]

 see "group #{g}: #{matched[g]}"

Replace
r = text.replace /[A-Z][a-z]*/g,

 "<mark>$&</mark>"

r = r.replace /\n/g,

 "
"

r = r.replace /\bw[a-z]*\b/g,

 (x) -> x.toUpperCase()

write r

Turtles are jQuery sets. Although most sets we have worked with contain

a single turtle, a set can contain any number of elements. hatch 15

makes a set of 15 new turtles, and $('.turtle') is the set of all turtles.

JQuery Set Methods

Methods operating on a jQuery set s can:

Generate a related set: s.nearest [0, 0] is the subset nearest 0, 0.

Manipulate the elements: s.fd 100 advances the elements by 100.

Test the elements: s.touches red tests pixels under the first element.

Generally a manipulation method like s.fd 100 will do the same thing

to every element of the set. However, the method s.plan applies a

function that can run a distinct operation on each element.

Giving Turtles Individualized Plans

When s.plan (j) -> action runs, The action is done for each element

with the following parameters:

this (aka @) is a jQuery set with the single element.

j is the element index, ranging from 0 to crowd.length - 1 .

For example, Scatter uses plan to direct each turtle to turn and move a

different random amount. The function call random normal returns a

normally distributed random number with mean 0 and variance 1.

The program Turtle Race is similar, but it also uses an await loop to

run the seven turtles in a parallel race. On each iteration, the turtles

individually check if they have crossed the red line. The shared variable

finished tracks the order in which the turtles finish.

Using and Selecting Classes

The loop in Rescue Class finds the nearest kid to each hero and removes

that kid if the hero touches it. Otherwise the hero turns and moves

towards the nearest kid and repeats the process.

At the beginning of that program, all the kids are marked with a class

using this.addClass('kid') . On the hero thread, the jQuery selector

$('.kid') obtains the set of all current elements in the kid class that

have not yet been removed.

jQuery methods that return sets can be chained. For example,

$('.kid').nearest(hero).eq(0) filters the set of kids to the subset

nearest hero , and then filters that subset to its first element, if any.

There are a wide range of jQuery methods for finding and manipulating

sets: much about jQuery has been written on the web.

bison: 7

armadillo: 12

giraffe: 14

zebra: 16

Total 495 / 11

Average 45

12. Objects

Page Coordinates
startpos =

 pageX: 80

 pageY: 10

moveto startpos

pen coral

moveto

 pageX: 30

 pageY: 50

moveto {pageX: 160, pageY: 50}

Figure
figure = [

 {c: dimgray, x: 75, y: 12}

 {c: gray, x: 0, y: 78}

 {c: dimgray, x: -75, y: 5}

 {c: gray, x: -35, y: -18}

 {c: plum, x: 0, y: -62}

 {c: gray, x: 35, y: -15}

 {c: black, x: 0, y: 95}

]

for line in figure

 pen line.c

 slide line.x, line.y

Scoring
points =

 a: 1, e: 1, i: 1, l: 1, n: 1, o: 1, r: 1, s: 1, t: 1, u: 1

 d: 2, g: 2, b: 3, c: 3, m: 3, p: 3, f: 4, h: 4, v: 4, w: 4, y: 4

 k: 5, j: 8, x: 8, q: 10, z: 10

score = (word) ->

 total = 0

 for letter in word

 total += points[letter]

 write "#{word}: #{total}"

score x for x in ['bison', 'armadillo', 'giraffe', 'zebra']

Methods
memo =

 sum: 0

 count: 0

 add: (x) -> @sum += x; @count += 1

 stats: ->

 write "Total #{this.sum} / #{this.count}"

 write "Average #{this.sum / this.count}"

memo.add(n) for n in [40..50]

memo.stats()

An object is a value that has its own properties. Each property of an object

associates a name with a value. The object startpos has two

properties: pageX , which has value 80, and pageY , which is 10.

The moveto function understands objects with a pageX and pageY

property as a "page coordinate." (Page coordinates measure distances

from the top-left corner of the page instead of from the center.)

Object Literals

In the Page Coordinate example, we can see that there are two styles

for writing object literals in CoffeeScript. Each property can be put on

separate lines, indented (YAML style); or the properties can be enclosed

in curly braces and separated by commas (JSON style). The two styles are

equivalent, and the program uses both.

Dot Notation

The properties of an object are referenced using a dot: line.x refers to

the value of the property named "x" in the object named "line".

The most common use of objects is as a way of encapsulating a packet of

related data together: in Figure, each object bundles the data needed

for one line: a color and an x, y displacement.

Associative Array Notation

A property name can be any string, so an object can be used as an

associative array that defines a map from strings to values.

In Scoring, points maps letters to point values. The square bracket

notation points[letter] means "look up the value of the property

whose name is the value of letter ."

Mutation and Methods

Properties of an object may be changed by assigning a value using the

normal = or += or ++ variable-setting operators. (Changing a property

of an object is sometimes called mutation.)

Properties of an object that happen to be functions are called methods.

Methods are particularly useful, because they can use the word this or

the symbol @ to refer to the object on which the method was called.

(Note that the line memo.add for n in [40..50] puts the for at the

end of the statement in order to repeat it.)

It is common to write methods like memo.add that mutate several

properties of the object at once, or methods like memo.stats that do

computation summarizing the properties of the object.

16. Sets

Scatter
turtle.remove()

s = hatch 15, orange

s.pen gold

s.plan ->

 this.rt random 360

 this.fd Math.abs(20 * random normal)

Turtle Race
fd 200; pen red; slide 200, 0

finished = 0

racers = hatch 7

racers.plan (j) ->

 @wear random color

 @speed 5 + random normal

 @slide j * 25 + 25, 0

 while not @touches red

 @fd random 5

 await @done defer()

 @label ++finished

Rescue Class
turtle.remove()

speed 100

randpos = ->

 [50 * random(normal), 50 * random(normal)]

hatch(20, green).scale(0.75).plan ->

 this.moveto randpos()

 this.addClass 'kid'

hatch(3, red).plan (num) ->

 hero = this

 count = 0

 hero.moveto randpos()

 hero.pen red

 while true

 await hero.done defer()

 kid = $('.kid').nearest(hero).eq(0)

 if kid.length is 0

 write "hero ##{num} got #{count}"

 return

 else if hero.touches(kid)

 count += 1

 kid.label num

 kid.remove()

 else

 hero.turnto(kid).fd(5)

1

0

2

1

2

0

0

2

0

A thread is a sequence in a program that runs in parallel to other code.

Iced CoffeeScript has cooperative threads, which means that:

Only one thread runs at once.

Concurrency is done by switching between threads.

Switching is only done at await statements.

Some new idioms that appear in these examples:

b = hatch blue hatches a new turtle, wearing blue.

b.lt 90 tells the turtle b to turn.

await done defer() waits until turtles stop moving.

send 'go' sends a message 'go'.

await recv 'go', defer() waits until 'go' is received.

while true repeats the enclosed code forever.

touches orange tests if the turtle touches any orange.

do -> runs the enclosed code as a function.

Multiple Turtles

In Race Condition, the second turtle to arrive will draw a dot that covers

the first dot. The turtles run concurrently, and it is is not possible to

predict which parallel turtle will arrive first.

If order is important, insert await b.done defer() before calling r .

The program will wait for b to finish before moving the red turtle.

An await only pauses the current function, not its caller. That is why the

last two examples run threads in parallel.

Synchronization

It is important to let a turtle finish moving before reading its state. If

Line Follower did not await done defer() to let the turtle finish

moving forward before checking the touched color, the turtle would still

be in its start position when check is done.

Even if not reading turtle state, an infinite while true loop should

contain an await done defer() so that other threads get a turn.

Communicating Between Threads

Threads can communicate using shared memory (sharing a common

variable) or message passing (sending a value from one to the other). If a

shared variable changes very quickly or slowly, the thread that reads the

variable can skip a value or read the same value twice. On the other

hand, a thread that uses await recv will wait to receive each message

sent by send exactly once without duplication or omission.

Exclamation? Yowzer

adverb? slowly

noun?

2

3

5

7

11

13

17

19

23

29

13. Arrays

Story
story = [

 'Exclamation?'

 '! he said '

 'adverb?'

 ' as he jumped into his convertible '

 'noun?'

 ' and drove off with his '

 'adjective?'

 ' wife.'

]

for i in [0...story.length] by 2

 prompt = story[i]

 await read prompt, defer answer

 story[i] = answer

write story.join ''

Primes
primes = []

candidate = 2

while primes.length < 10

 composite = false

 for p in primes

 if candidate % p is 0

 composite = true

 break

 if not composite

 primes.push candidate

 write candidate

 candidate = candidate + 1

Push and Pop
stack = []

pen green

speed Infinity

button 'R', -> rt 30

button 'F', -> fd 10

button 'Push', ->

 dot crimson

 stack.push [getxy(), direction()]

button 'Pop', ->

 if not stack.length then home(); return

 [xy, b] = stack.pop()

 jumpto xy

 turnto b

 dot pink

R F Push Pop

Arrays are objects that contain a sequence of values. Throughout this

book we have used arrays for iteration in for loops; arrays are used

wherever a program needs to organize sequential data.

Referencing and Joining Array Elements

The i th element of an array story is story[i] , and the number of

elements is story.length . Indexing is zero-based, so the first element

is story[0] and the last is story[story.length - 1] .

All the elements of an array can be joined together in one big string by

story.join '' . The argument is the "glue" put between the elements.

Await and Defer

The statement await read prompt, defer answer pauses the

program until the read is done. defer answer is a continuation funtion

that resumes the program after putting the result in answer .

Building Arrays with Push

A program can use push to add elements to the end of an array.

Primes starts with primes = [] as an empty array, and then it calls

primes.push candidate to add each discovered prime to the array of

divisors to check. This ancient algorithm is the Sieve of Eratosthenes.

Stacks of Objects

Arrays have a pop method that reverses of push by removing and

returning the last value. An array used by pushing and popping is called

a stack.

It is common to use a stack of objects to undo a sequence. In Push and

Pop, stack is an array where every element is a turtle position. Each

element is itself a two-element array containing an [x, y] (itself another

array) and a numerical direction.

Destructuring

getxy() returns the turtle's current [x, y] as an array of two numbers.

direction() returns the current direction of the turtle in degrees.

stack.push [getxy(), direction()] reads the turtle's current xy

coordinates and its current direction, forms an array with the results,

and pushes it on the stack .

[xy, b] = stack.pop removes the last element from the stack (the

element is itself an array), and assigns the first item within of the

element to the variable xy and the second item in element to b .

The form [xy, b] = value is called a destructuring assignment. It is a

concise way to give local variable names to the elements of a short array.

15. Concurrency

Race Condition
b = hatch blue

r = hatch red

b.lt 90; b.pen blue

b.play 'g'

b.rt 170, 50

b.dot 50, blue

r.rt 90; r.pen red

r.play 'd'

r.lt 170, 50

r.dot 50, red

Line Follower
dot orange, 220

dot white, 180

jump 100, 0

pen skyblue

while true

 fd 3 + random 3

 await done defer()

 if touches orange

 lt 5

 else

 rt 5

Shared Memory
shared = { d: 0 }

do ->

 while true

 await read defer shared.d

do ->

 pen red

 while true

 fd 10

 await done defer()

 rt shared.d

Message Passing
button 'send color', ->

 send 'go', random color

do ->

 for x in [1..25]

 await recv 'go', defer c

 pen c

 fd 50

 rt 88, 10

⇒ 30

⇒ -20

⇒

send color

Recursive functions refer to themselves, and they can achieve powerful

effects. Recursion is at the core of fractals, language, and reasoning.

Recursion as a Stack

Operationally, recursion works by stepping through a stack of work.

Consider the sequence as Spiral draws a shape and retraces it back.

spiral 10 sets x to 10

 rt 90; fd x * 10; spiral x - 1 ⇓ lt 90; bk x * 10 ⇑

 spiral 9 sets x to 9

 rt 90; fd x * 10; spiral x - 1 ⇓ lt 90; bk x * 10 ⇑

 spiral 8 sets x to 8

 rt 90; fd x * 10; spiral x - 1 ⇓ lt 90; bk x * 10 ⇑

 ... etc, until the base case spiral 0 ⇑

Each time spiral is called, it puts the previous call on hold and does the

smaller spiral. After the smaller spiral is done, it returns to finish work on

the bigger one. spiral 0 does nothing: that is called the base case.

The x at different levels are local variables that do not interfere with

each other. Each red box is a stack frame with its own "copy" of x .

Recursion as a Reduction

Conceptually, recursion reduces a problem to smaller cases. Consider

how Fern draws a large fern by assuming it can draw smaller ferns:

All fern does is draw a stem with three smaller ferns at the end. The

main caveat is that the reduction has a limit: it ends when x ≤ 1.

Both Spiral and Fern return the turtle to exactly the same position and

direction at the end of a function call. Maintaining an invariant like this

can make recursion much easier to understand.

⇒

14. Recursion

Recursive Spiral
spiral = (x) ->

 if x > 0

 fd x * 10

 rt 90

 spiral x - 1

 lt 90

 bk x * 10

pen red

spiral 10

Fractal Fern
speed 1000

fern = (x) ->

 if x > 1

 fd x

 rt 95

 fern x * .4

 lt 190

 fern x * .4

 rt 100

 fern x * .8

 lt 5

 bk x

pen green

fern 50

Koch Snowflake
speed Infinity

flake = (x) ->

 if x < 3 then fd x

 else

 flake x / 3

 lt 60

 flake x / 3

 rt 120

 flake x / 3

 lt 60

 flake x / 3

pen 'path'

for s in [1..3]

 flake 150

 rt 120

fill 'azure strokeStyle navy'

